Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Pharmacol ; 13: 970494, 2022.
Article in English | MEDLINE | ID: covidwho-2022840

ABSTRACT

The worldwide outbreak of SARS-CoV-2 in early 2020 caused numerous deaths and unprecedented measures to control its spread. We employed our Computational Analysis of Novel Drug Opportunities (CANDO) multiscale therapeutic discovery, repurposing, and design platform to identify small molecule inhibitors of the virus to treat its resulting indication, COVID-19. Initially, few experimental studies existed on SARS-CoV-2, so we optimized our drug candidate prediction pipelines using results from two independent high-throughput screens against prevalent human coronaviruses. Ranked lists of candidate drugs were generated using our open source cando.py software based on viral protein inhibition and proteomic interaction similarity. For the former viral protein inhibition pipeline, we computed interaction scores between all compounds in the corresponding candidate library and eighteen SARS-CoV proteins using an interaction scoring protocol with extensive parameter optimization which was then applied to the SARS-CoV-2 proteome for prediction. For the latter similarity based pipeline, we computed interaction scores between all compounds and human protein structures in our libraries then used a consensus scoring approach to identify candidates with highly similar proteomic interaction signatures to multiple known anti-coronavirus actives. We published our ranked candidate lists at the very beginning of the COVID-19 pandemic. Since then, 51 of our 276 predictions have demonstrated anti-SARS-CoV-2 activity in published clinical and experimental studies. These results illustrate the ability of our platform to rapidly respond to emergent pathogens and provide greater evidence that treating compounds in a multitarget context more accurately describes their behavior in biological systems.

2.
Molecules ; 27(9):3021, 2022.
Article in English | ProQuest Central | ID: covidwho-1843000

ABSTRACT

Humans are exposed to numerous compounds daily, some of which have adverse effects on health. Computational approaches for modeling toxicological data in conjunction with machine learning algorithms have gained popularity over the last few years. Machine learning approaches have been used to predict toxicity-related biological activities using chemical structure descriptors. However, toxicity-related proteomic features have not been fully investigated. In this study, we construct a computational pipeline using machine learning models for predicting the most important protein features responsible for the toxicity of compounds taken from the Tox21 dataset that is implemented within the multiscale Computational Analysis of Novel Drug Opportunities (CANDO) therapeutic discovery platform. Tox21 is a highly imbalanced dataset consisting of twelve in vitro assays, seven from the nuclear receptor (NR) signaling pathway and five from the stress response (SR) pathway, for more than 10,000 compounds. For the machine learning model, we employed a random forest with the combination of Synthetic Minority Oversampling Technique (SMOTE) and the Edited Nearest Neighbor (ENN) method (SMOTE+ENN), which is a resampling method to balance the activity class distribution. Within the NR and SR pathways, the activity of the aryl hydrocarbon receptor (NR-AhR) and the mitochondrial membrane potential (SR-MMP) were two of the top-performing twelve toxicity endpoints with AUCROCs of 0.90 and 0.92, respectively. The top extracted features for evaluating compound toxicity were analyzed for enrichment to highlight the implicated biological pathways and proteins. We validated our enrichment results for the activity of the AhR using a thorough literature search. Our case study showed that the selected enriched pathways and proteins from our computational pipeline are not only correlated with AhR toxicity but also form a cascading upstream/downstream arrangement. Our work elucidates significant relationships between protein and compound interactions computed using CANDO and the associated biological pathways to which the proteins belong for twelve toxicity endpoints. This novel study uses machine learning not only to predict and understand toxicity but also elucidates therapeutic mechanisms at a proteomic level for a variety of toxicity endpoints.

3.
Antiviral Res ; 195: 105183, 2021 11.
Article in English | MEDLINE | ID: covidwho-1458592

ABSTRACT

The likelihood of continued circulation of COVID-19 and its variants, and novel coronaviruses due to future zoonotic transmissions, combined with the current paucity of coronavirus antivirals, emphasize the need for improved screening in developing effective antivirals for the treatment of infection by SARS-CoV-2 (CoV2) and other coronaviruses. Here we report the development of a live-cell based assay for evaluating the intracellular function of the critical, highly-conserved CoV2 target, the Main 3C-like protease (Mpro). This assay is based on expression of native wild-type mature CoV2 Mpro, the function of which is quantitatively evaluated in living cells through cleavage of a biosensor leading to loss of fluorescence. Evaluation does not require cell harvesting, allowing for multiple measurements from the same cells facilitating quantification of Mpro inhibition, as well as recovery of function upon removal of inhibitory drugs. The pan-coronavirus Mpro inhibitor, GC376, was utilized in this assay and effective inhibition of intracellular CoV2 Mpro was found to be consistent with levels required to inhibit CoV2 infection of human lung cells. We demonstrate that GC376 is an effective inhibitor of intracellular CoV2 Mpro at low micromolar levels, while other predicted Mpro inhibitors, bepridil and alverine, are not. Results indicate this system can provide a highly effective high-throughput coronavirus Mpro screening system.


Subject(s)
Biosensing Techniques , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Pyrrolidines/pharmacology , SARS-CoV-2/enzymology , Sulfonic Acids/pharmacology , Drug Evaluation, Preclinical , Fluorescence , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL